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LETTER TO THE EDITOR 

Existence of two dissipation peaks in a superconducting glass 
model 
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$ InStitutO de Flsica. Univenidad Nacional Aut6noma de Mkico, Postal 20-364. OIOOO 
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Received 9 March 1993 

Abstrad A superconducting glass model with unidirectional correlated disorder is studied via 
extensive Monte Carlo simulations in two and three dimensions. A calculation of the magnetic 
fluctuations shows two disipation peak3 at temperatures TI and T2, with TI < fi < T,. Resets 
for lhe 3D phase correlation functions indicate that $e 7- < Ti phase is less ordere&than the 
71 c T' phase. The 71 transition'is found to be dlie to an enhancement of short-range phase 
conelations, while the one at T2 is longer ranged. The possible connection of these results to 
recent experiments in high-T, oxide superconductors is discussed. 

One of the most important goals in the theoretical study of high-temperature superconductors 
has been to understand the magnetic field against temperature phase diagram ( H  against 
T diagram). The existence of an irreversibility line (E) in the H against T diagram was 
first reported by Muller et a1 [I]. Their results were later experimentally confirmed in 
virtually all other high-T, superconductors. In a recent series of experiments, however, 
evidence for more than one thermal instability in the H against T diagram has been 
reported [2-4]. These results are in striking contrast with previous studies that, for a 
given experiment, have reported seeing only one thermal instability in the H against T 
diagram. In YBaCuO compounds (YBCO) a second thermal instability was seen as a 'knee' 
in resistivity measurements [2], while in more recent experiments evidence for having a 
melting transition above the IL has been presented 131. Two dissipation peaks were also 
seen in experiments on BiSrCaCuO (BSCCO) single crystals when an external magnetic 
field was rotared with respect to the E axis [4]. A w e n t  paper by Brandt [5] provides 
a possible explanation for these BSCCO experiments in terms of geometrical effects that 
depend directly on the physical dimensions of the samples used in the experiments. Most 
theoretical studies based on the superconducting glass model suggested by Muller eta1 have 
so far concentrated in calculating its thermodynamic properties. However, in the torsional 
oscillator and transport experiments what is measured is related to fluctuations, for example 
correlation functions. 

Motivated by these experimental results we have carried out a detailed Monte Carlo 
(MC) analysis of the fluctuations in the magnetic and spatial correlation functions of a 
2D and 3D superconducting glass model [6,  71 (SGM), that entails including correlated 
disorder (CSGM) [8] with a magnetic field perpendicular to the layers. Previous studies 
of the remanent magnetic properties of these types of models were successful in yielding 
qualitative agreement with experiments in the oxide superconductors [7, 81, including well- 
separated branches of zero-field-cooled (MZFC) and field-cooled (MFc)  magnetizations [81. 
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Variations of the SGM have also been used as the basis of quantitative studies that consider 
the possibility of an equilibrium second-order vortex glass transition 191. There are also 
recent studies in non-disordered models that show two melting transitions [IO]. The present 
study is fundamentally different in that disorder plays an essential role. 

In the calculations described here we found two thermal instabilities in the 2% branch at 
finite temperatures T, and Tz with T, < Tz < T,, where Tc is the critical temperature above 
which M is essentially zero. In contrast to Brandt's explanation of the BSCCO experiments, 
the two thermal instabilities found here are intrinsic to the model and appear when the 
magnetic field is perpendicular to the layers. The two thermal instabilities, or two dissipation 
peaks, are an inherent property of the CSGM, not present in the uncorrelated case, and are 
clearly seen only in the fluctuations of the magnetization and phase correlation functions in 
our 2D and 3D calculations. This fact shows that the two thermal instabilities are directly 
related to the vortex properties of the model. Clear differences between the 2D and 3D 
results emerge from the calculation of the phase correlation functions. We present strong 
evidence that in three dimensions the TI instability entails an increase in the local coherence 
of the phases, while the one at T2 involves longer-ranged correlations. Furthermore, we 
find that the phase correlations are smaller in the T -  -= TI phase than in the TI < T+ 
phase, indicating that the T- + T+ entails a disorder-torder transition. We shall discuss 
the similarities and differences between our results and those found in recent experiments 
at the end of this letter. 

The CSCG model studied here is defined by the Hamiltonian 

'H= x I I E 1 ' [ l  -cos(#&) - # j ( z )  + k f i j ( z ) ) l +  E'[l -cos(#&) -&(z+ l))]) (I) 
i1.r 

with i ,  j denoting two-dimensional vectors and z the distance perpendicular to the layers; 
&(z) stands for the phase of the Ginzburg-Landau order parameter of the ith (z)  'grain'; 
Ell and E' are the intralayer and interlayer Josephson coupling constants, respectively; 
the link variable f i i (z)  = ( I /Q0)  A .  dl, with A the magnetic vector potential, and 
@O the quantum of flux. In our calculations we use the Landau gauge A = (0, H x ,  0). 
The frustration parameter, F ,  is then defined as F = cp fil, with cp the sum over 
plaquettes. We will measure energies normalized by Ell and fields by Oo/ai, where a0 is 
the lattice spacing, so that we  write F = H. The disorder in the CSGM is introduced by 
independently displacing the y columns in each plane, with initially square lattice geometry, 
by xi = i& +rao with r a random number uniformly distributed in the interval [-$, $1. 
In the 3D calculations the disorder along the y columns is uncorrelated between planes. 
Since the amount of disorder in the model can be changed by varying 6 or H, we fix 
8 = 0.1 in our calculations, as in [SI, and vary only H .  This type of disorder has the effect 
of preferentially enhancing the trapping of vortices in the system along they axis. Another 
type of correlated disorder, of a columnar type, has been considered in recent experiments 
and theory [ I  I]. The similarity between the columnar disorder and the one considered here 
is that the correlation enhances the pinning along preferential directions. 

Near thermodynamic equilibrium, the linear response functions are described in terms 
of susceptibilities which in turn are related to the thermodynamic fluctuations in the system. 
Thus, to make contact with the quantities measured in, say, the oscillator experiments, we 
present results for the fluctuations of the magnetization as a function of field and temperature. 
We also present results of calculations of the fluctuations of the quenched gaugeinvariant 
phase correlation functions, related to the current-current correlation functions of the model, 
which allow us to gain a microscopic understanding of the nature of the thermal instabilities 
found in our calculations. 
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The quenched averaged magnetization is obtained from calculating 

I with ~ i ( ~ ) . j ( ~ )  = &WI + x j ( d  and Xi(i),j(z~ = +(xi<?) +xj(d(Yiw - Y i d .  The bracket 
[, IC denotes the configurational average over an ensemble of different realizations of the 
disordered lattice; ( , ) stands for the thermodynamic average and (i. j ,  z) for a nearest- 
neighbour sum in the planes (2D) and along the z axis (3D). The quenched averaged gauge- 
invariant phase correlation function is defined by 

Here r denotes a path connecting the points i ( z )  to j (z’) .  ~ It is convenient to calculate 
the zero-momentum correlation function, which is known to have only one asymptotic 
correlation length, or Lyapunov exponent [12]. Note that, since the disorder is along the y 
columns, the G(r) along the x and y directions are expected to show different behaviours, 
as found in our calculations. This is typical of gauge-invariant correlation functions which 
are path dependent [12]. 

We discuss first our ZD results. We started by calculating the ZFC and FC branches of 
the magnetization following a similar procedure as in the experiments, e.g. [l]. As found 
from a finite-size analysis in [PI, we take a lattice of size 16 x 16 as representative of the 
properties of the model. Since we are interested in calculating fluctuations here, which 
are notoriously harder to evaluate than thermodynamic properties, we need to have long 
mns and vary the temperature very slowly. Specifically, the ZFC branch is obtained by 
first equilibrating at T = 0.10 in zero field; the field is then switched on and the system is 
warmed up first in steps of AT = 2x lo-* from T = 0.10 up to T = 0.90, and then in steps 
of AT = 0.10 from T = 0.90 to T = 1.5. The T, for this lattice size is Tc - 1.2. The FC 
branch is obtained by cooling at the same variable rate down to T = 0.10, for the same H. 
%ically, the system was allowed to equilibrate for IOK Mcskite at each temperature and 
the averages were calculated over 60K MCS/Site. A complete scan of ZFC plus FC branches 
consisted of 92 temperatures, entailing about 6.4 x lo6 MCShite. This process was repeated 
for five different configurations of disorder to obtain the quenched averages. We found that 
with this many temperatures and members of the ensemble we got statistically significant 
results for the 2D calculations. 

In figure 1 we show representative results for the thermal fluctuations of M m ,  CM;NJT, 
as a function of the renormalized temperature TITc and H. The fluctuations were ciculated 
from the standard expression, 

I .  

Here m is the number of disordered samples in the ensemble and N stands for the number of 
subsets in the thermodynamic averages. The curves shown in figure 1 were obtained from 
smoothing the raw data obtained from equation (4) using a cubic-spline fit. This process 
gives different weights to the data points and, for example, figures I(u) and (6) show a 
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F ~ u w  1. 20 ZFC magnetization fluctuations uM jT plotted against TIT,, for different fields H. 
Results obtained from averages over five configurations of 16 x 16 lattices. The fields are: (a) 
H = 0,  (b) H = 0.008, (e) H = 0.010 and (d) H = 0.011. The (oHd) vedcal axis should 
be multiplied by IO-’ and the vertical axis in the inset by The inset shows q(H) (O), 
Tz(H) (0) and T d H )  ( x )  determined from an approximale estimate of the maxima in UM. lbe 
curves are a guide to the eye. More details are found in the IexL 

jump for TIT,  - I since the spline fit gives a very small weight for the OM values for 
T/ Tc < 1. We clearly see that, for H # 0, there are two thermal instabilities in u~ as a 
function of T.  The lower peak corresponds to the temperature T,(H) where M m  and ME 
join. This temperature has been used as the defining boundary between ergodic and non- 
ergodic behaviour [I] .  The second increase in fluctuations occurs about T z ( H ) ( c  Tc), the 
width of the Tl (H)  peak being narrower than the one at Tz(H). For values of H < 0.005 
(below the lowest points for TI and T, shown in the inset) the two branches of M coincide 
corresponding to a purely diamagnetic Meissner phase. Note that, in the case when H = 0, 
there is only one maximum for the fluctuations, thus showing that disorder is essential to 
the existence of the two thermal instabilities. The H = 0 peak is not negligible since the 2D 
model has larger fluctuations than in three dimensions. This difference is clear from looking 
at the H = 0 result in figure 2(a). In contrast to the peaks in the MZR, the results for 
the fluctuations of MFC, not shown here, exhibit a monotonically increasing behaviour as T 
decreases, as would be expected from an equilibrium susceptibility with perhaps a T = 0 
critical point. This important difference in the dissipation structure between the ZFC and 
FC magnetization branches also appears to agree with recent magnetization data obtained ’ 

in BSCCO single crystals [ 131. In the inset of figure 1 we show an H against T / T ,  phase 
diagram obtained from an approximate determination of the maxima of the two thermal 
instabilities. A fit to our limited numerical results for T l ( H )  is not possible since it appears 
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to have inflection points. A reasonable fit to the power law H = A(T - TCY is obtained, 
however, for Tz(H) with A = 0.12, Tc = 1.199 and the exponent (Y = 0.35. In doing this 
fit we have assumed that Tz(H = 0) = T.(H = 0). We should.emphasiE that the existence 
of the second peak is clear only from the analysis of the fluctuations of Mpc and not from 
MZM: itself. 

Figure 2. The same as in figure 1 for three dimensions including inset (Z), for a lattice of 
dimension 16 x 16 x 5 with EL/&" = 0.5. Here (U )  H = 0. (b) H = 0.008, (c) H = 0.01 
and (d )  H = 0.012. The scales are the same as in figure 1. Inset (1) shows results for the ZFC 
CII(r) as a function of r .  for r = 1 (U), r = 2 (0) and r = 3 (x)  for H = 0.01. Note that 
Cil(r) is larger above TI. 

We now discuss our quasi-3D results. In figure 2 we show the corresponding results 
for a M / T  as a function of T/Tc  (T, - 1.8) for different values of H, with E L / E I  = 0.5. 
Again, since we wanted to calculate fluctuations in the 3D model we had to find a compromise 
between many temperatures and ensemble averages. We opted for doing simulations in one 
system but with many closely spaced temperatures. We found good statistics for a lattice 
of size 16 x 16 x 5 with 116 temperatures, with about the same number of MCS/site as in 
two dimensions, for a total of 8.1 x IO6 MCS/Site for a complete cycle, which entails about 
10'O updates for each H. We followed the same procedure of warming and cooling as in 
the 2D calculations. The results of figure 2 show a two-peaked structure in the fluCNatiOnS 
of M ~ F ,  with the peak at TI (H) more pronounced than the one at Tl(H),  in contrast to the 
2D result. The rate of change of the peak widths as a function of field and temperature is 
qualitatively similar to that found in two dimensions, including the fact that the two-peak 
structure is not seen in the FC branch of the magnetization. In this case fits to the critical 
temperature of the form A(T - T,(H))' are more reasonable than in two dimensions and 
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give the following results: H = ~O.S(T,(H) - 1.83)0.931, H = 0.13(Tz(H) - 1.83)0.3 and 
H = 0.24(Tc(H) - I.83)0.34. 
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Figure 3. 3 0  uGc,, plotted against T/T, for diffexent distances r. The parameters are lk Same 

as in inset (1) in figure 2. 

We now discuss the results from the zero-momentum correlation function calculations, 
and their fluctuations, in two and three dimensions along the y and x directions, denoted 
as GI!(T) and G l ( r ) ,  respectively. Recall that A 11 y. In the T < TI(*) region, we find 
that the GI as a function of r have a monotonic exponential'decay, with correlation length 
decreasing as T increases. The ZFC and FC branches of GL(T) are essentially identical to 
each other in this temperature range. In contrast, the ZK: and FC branches of Gll(r) are 
different, with the ZFC branch decaying faster than the FC branch. This difference disappears 
for TI < T ,  both in two and three dimensions. The m branch of GI(?') as a function 
of T for fixed r shows a discontinuity about Ti(H), that tends to zero for r > 4. This 
behaviour is shown for the 3D case in inset (1) of figure 2. We note the important fact that 
the correlations are smaller just below TI and larger above. This means that the phases are 
less correlated for T < TI than above. As in the magnetization case, there is no evidence in 
the ZK: GII(T) for a fi instability. The Tz instability becomes evident only by calculating 
the.fluctuations of the m C  Gll(r), uon. In figure 3 we show the results for the 3D uGG(,). 
as a function of T for different values of r. A two thermal instabilities structure is seen 
in this figure, as in the uM case. However, we note that the TI (H) peak has a maximum 
for r - (3.4). while the peak at T z ( H )  increases monotonically and becomes narrower 
as r grows. The results for GII(T) and uGpb indicate that the Z ( H )  instability separates a 
disordered from an ordered phase and is connected to an increase in the short-range phase 
correlation while the one at Tz(H) involves an increase of longer-ranged correlations. By 
contrast, the corresponding XI calculation of uGcm shows a small peak at TI (H) superimposed 
on a broad background, both of which remain almost of the same magnitude as r increases. 

In conclusion, we have presented evidence for the existence of two thermal instabilities 
in a superconducting glass model with correlated disorder. Our results suggest a &pinning 
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transition about TI with no free vortex motion until there is enough themal energy to 
induce longer-ranged motions about T2. The second instability would appear to better fit 
the melting transition scenario. Although the model considered does not have an explicit 
representation to the experimental systems studied, the results are qualitatively analogous 
to the experimental results found in ma0 [I], with a depinning+melting transition. 
More work is needed to ascertain the explicit relevance of the results found here to the 
experimental findings. An extensive discussion of these and other results will appear 
elsewhere [ 141. 
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